3.485 \(\int \frac {x^3}{(a+b x^3)^2 \sqrt {c+d x^3}} \, dx\)

Optimal. Leaf size=64 \[ \frac {x^4 \sqrt {\frac {d x^3}{c}+1} F_1\left (\frac {4}{3};2,\frac {1}{2};\frac {7}{3};-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{4 a^2 \sqrt {c+d x^3}} \]

[Out]

1/4*x^4*AppellF1(4/3,2,1/2,7/3,-b*x^3/a,-d*x^3/c)*(1+d*x^3/c)^(1/2)/a^2/(d*x^3+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {511, 510} \[ \frac {x^4 \sqrt {\frac {d x^3}{c}+1} F_1\left (\frac {4}{3};2,\frac {1}{2};\frac {7}{3};-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{4 a^2 \sqrt {c+d x^3}} \]

Antiderivative was successfully verified.

[In]

Int[x^3/((a + b*x^3)^2*Sqrt[c + d*x^3]),x]

[Out]

(x^4*Sqrt[1 + (d*x^3)/c]*AppellF1[4/3, 2, 1/2, 7/3, -((b*x^3)/a), -((d*x^3)/c)])/(4*a^2*Sqrt[c + d*x^3])

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 511

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[(a^IntPa
rt[p]*(a + b*x^n)^FracPart[p])/(1 + (b*x^n)/a)^FracPart[p], Int[(e*x)^m*(1 + (b*x^n)/a)^p*(c + d*x^n)^q, x], x
] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] &&  !(IntegerQ[
p] || GtQ[a, 0])

Rubi steps

\begin {align*} \int \frac {x^3}{\left (a+b x^3\right )^2 \sqrt {c+d x^3}} \, dx &=\frac {\sqrt {1+\frac {d x^3}{c}} \int \frac {x^3}{\left (a+b x^3\right )^2 \sqrt {1+\frac {d x^3}{c}}} \, dx}{\sqrt {c+d x^3}}\\ &=\frac {x^4 \sqrt {1+\frac {d x^3}{c}} F_1\left (\frac {4}{3};2,\frac {1}{2};\frac {7}{3};-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{4 a^2 \sqrt {c+d x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.21, size = 238, normalized size = 3.72 \[ \frac {x \left (\frac {8 \left (\frac {8 a c^2 F_1\left (\frac {1}{3};\frac {1}{2},1;\frac {4}{3};-\frac {d x^3}{c},-\frac {b x^3}{a}\right )}{3 x^3 \left (2 b c F_1\left (\frac {4}{3};\frac {1}{2},2;\frac {7}{3};-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+a d F_1\left (\frac {4}{3};\frac {3}{2},1;\frac {7}{3};-\frac {d x^3}{c},-\frac {b x^3}{a}\right )\right )-8 a c F_1\left (\frac {1}{3};\frac {1}{2},1;\frac {4}{3};-\frac {d x^3}{c},-\frac {b x^3}{a}\right )}+c+d x^3\right )}{a+b x^3}+\frac {d x^3 \sqrt {\frac {d x^3}{c}+1} F_1\left (\frac {4}{3};\frac {1}{2},1;\frac {7}{3};-\frac {d x^3}{c},-\frac {b x^3}{a}\right )}{a}\right )}{24 \sqrt {c+d x^3} (a d-b c)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x^3/((a + b*x^3)^2*Sqrt[c + d*x^3]),x]

[Out]

(x*((d*x^3*Sqrt[1 + (d*x^3)/c]*AppellF1[4/3, 1/2, 1, 7/3, -((d*x^3)/c), -((b*x^3)/a)])/a + (8*(c + d*x^3 + (8*
a*c^2*AppellF1[1/3, 1/2, 1, 4/3, -((d*x^3)/c), -((b*x^3)/a)])/(-8*a*c*AppellF1[1/3, 1/2, 1, 4/3, -((d*x^3)/c),
 -((b*x^3)/a)] + 3*x^3*(2*b*c*AppellF1[4/3, 1/2, 2, 7/3, -((d*x^3)/c), -((b*x^3)/a)] + a*d*AppellF1[4/3, 3/2,
1, 7/3, -((d*x^3)/c), -((b*x^3)/a)]))))/(a + b*x^3)))/(24*(-(b*c) + a*d)*Sqrt[c + d*x^3])

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^3+a)^2/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3}}{{\left (b x^{3} + a\right )}^{2} \sqrt {d x^{3} + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^3+a)^2/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

integrate(x^3/((b*x^3 + a)^2*sqrt(d*x^3 + c)), x)

________________________________________________________________________________________

maple [C]  time = 0.37, size = 1207, normalized size = 18.86 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(b*x^3+a)^2/(d*x^3+c)^(1/2),x)

[Out]

-1/3*I/b/d^2*2^(1/2)*sum(1/_alpha^2/(a*d-b*c)*(-c*d^2)^(1/3)*(1/2*I*(2*x+(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(
1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-c*d^2)^(1/3)/d)/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3))*d)^(1/2)*(
-1/2*I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)/(d*x^3+c)^(1/2)*(2*_alpha^2*d
^2+I*(-c*d^2)^(1/3)*3^(1/2)*_alpha*d-(-c*d^2)^(1/3)*_alpha*d-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^(2/3))*Elliptic
Pi(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2),1/2*
(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d+I*3^(1/2)*c*d-3*c*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha-3*(-c*d^2)^(2/3)*_a
lpha)/(a*d-b*c)*b/d,(I*3^(1/2)*(-c*d^2)^(1/3)/(-3/2*(-c*d^2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)/d)^(1/2))
,_alpha=RootOf(_Z^3*b+a))-a/b*(-1/3/a*b/(a*d-b*c)*x*(d*x^3+c)^(1/2)/(b*x^3+a)+1/9*I/(a*d-b*c)/a*3^(1/2)*(-c*d^
2)^(1/3)*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-c*d^
2)^(1/3)/d)/(-3/2*(-c*d^2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d))^(1/2)*(-I*(x+1/2*(-c*d^2)^(1/3)/d+1/2*I*3^
(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2)/(d*x^3+c)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2*(-c*d^
2)^(1/3)/d-1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2),(I*3^(1/2)*(-c*d^2)^(1/3)/(-3/2*(-c
*d^2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)/d)^(1/2))+1/18*I/a/d^2*2^(1/2)*sum((-7*a*d+4*b*c)/(a*d-b*c)^2/_a
lpha^2*(-c*d^2)^(1/3)*(1/2*I*(2*x+(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-
c*d^2)^(1/3)/d)/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3))*d)^(1/2)*(-1/2*I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/3)+(
-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)/(d*x^3+c)^(1/2)*(2*_alpha^2*d^2+I*(-c*d^2)^(1/3)*3^(1/2)*_alpha*d-(-
c*d^2)^(1/3)*_alpha*d-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/3)
/d-1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2),1/2*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d+
I*3^(1/2)*c*d-3*c*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha-3*(-c*d^2)^(2/3)*_alpha)/(a*d-b*c)*b/d,(I*3^(1/2)*(-c*d^2)
^(1/3)/(-3/2*(-c*d^2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)/d)^(1/2)),_alpha=RootOf(_Z^3*b+a)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3}}{{\left (b x^{3} + a\right )}^{2} \sqrt {d x^{3} + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^3+a)^2/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^3/((b*x^3 + a)^2*sqrt(d*x^3 + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {x^3}{{\left (b\,x^3+a\right )}^2\,\sqrt {d\,x^3+c}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/((a + b*x^3)^2*(c + d*x^3)^(1/2)),x)

[Out]

int(x^3/((a + b*x^3)^2*(c + d*x^3)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3}}{\left (a + b x^{3}\right )^{2} \sqrt {c + d x^{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(b*x**3+a)**2/(d*x**3+c)**(1/2),x)

[Out]

Integral(x**3/((a + b*x**3)**2*sqrt(c + d*x**3)), x)

________________________________________________________________________________________